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Ondřej Lhoták

David R. Cheriton School of
Computer Science

University of Waterloo
Waterloo, ON N2L 3G1, Canada

olhotak@uwaterloo.ca

Abstract

Object-sensitivity has emerged as an excellent context abstraction
for points-to analysis in object-oriented languages. Despite its prac-
tical success, however, object-sensitivity is poorly understood. For
instance, for a context depth of 2 or higher, past scalable imple-
mentations deviate significantly from the original definition of an
object-sensitive analysis. The reason is that the analysis has many
degrees of freedom, relating to which context elements are picked
at every method call and object creation. We offer a clean model
for the analysis design space, and discuss a formal and informal un-
derstanding of object-sensitivity and of how to create good object-
sensitive analyses. The results are surprising in their extent. We
find that past implementations have made a sub-optimal choice of
contexts, to the severe detriment of precision and performance. We
define a “full-object-sensitive” analysis that results in significantly
higher precision, and often performance, for the exact same con-
text depth. We also introduce “type-sensitivity” as an explicit ap-
proximation of object-sensitivity that preserves high context qual-
ity at substantially reduced cost. A type-sensitive points-to analysis
makes an unconventional use of types as context: the context types
are not dynamic types of objects involved in the analysis, but in-
stead upper bounds on the dynamic types of their allocator objects.
Our results expose the influence of context choice on the quality
of points-to analysis and demonstrate type-sensitivity to be an idea
with major impact: It decisively advances the state-of-the-art with
a spectrum of analyses that simultaneously enjoy speed (several
times faster than an analogous object-sensitive analysis), scalabil-
ity (comparable to analyses with much less context-sensitivity), and
precision (comparable to the best object-sensitive analysis with the
same context depth).

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics

General Terms Algorithms, Languages, Performance
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1. Introduction

Points-to analysis (or pointer analysis in our context) is one of the
most fundamental static program analyses. Points-to analysis con-
sists of computing a static abstraction of all the data that a pointer
expression (or just a variable, without loss of generality) can point
to during program run-time. The analysis forms the basis for practi-
cally every other program analysis and is closely inter-related with
mechanisms such as call-graph construction, since the values of a
pointer determine the target of dynamically resolved calls, such as
object-oriented dynamically dispatched method calls or functional
lambda applications. By nature, the entire challenge of points-to
analysis is to pick judicious approximations. Intractability lurks be-
hind any attempt to track program control- or data-flow precisely.
Furthermore, the global character and complicated nature of the
analysis make it hard to determine how different analysis decisions
interact with various language features. For object-oriented and
functional languages, context-sensitivity is a general approach that
achieves tractable and usefully high precision. Context-sensitivity
consists of qualifying local program variables, and possibly (heap)
object abstractions, with context information: the analysis collapses
information (e.g., “what objects this method argument can point
to”) over all possible executions that result in the same context,
while separating all information for different contexts. Two main
kinds of context-sensitivity have been explored: call-site sensitivity
[18, 19] and object-sensitivity [13].

Ever since the introduction of object-sensitivity by Milanova et
al. [13], there has been accumulating evidence [3, 7, 8, 10, 14] that
it is a superior context abstraction for object-oriented programs,
yielding high precision relative to cost. The success of object-
sensitivity has been such that, in current practice, object-sensitive
analyses have almost completely supplanted traditional call-site
sensitive/kCFA analyses for object-oriented languages. This paper
is concerned with understanding object-sensitivity in depth, for-
malizing it conveniently, and exploring design choices that produce
even more scalable and precise analyses than current practice.

What is object-sensitivity at a high level? Perhaps the easi-
est way to describe the concept is by analogy and contrast to the
better-known call-site sensitivity. A call-site sensitive/kCFA analy-
sis uses method call-sites (i.e., labels of instructions that may call
the method) as context elements. That is, in OO terms, the analysis
separates information on local variables (e.g., method arguments)
per call-stack (i.e., sequence of k call-sites) of method invocations
that led to the current method call. Similarly, the analysis separates
information on heap objects per call-stack of method invocations
that led to the object’s allocation. For instance, in the code example
below, a 1-call-site sensitive analysis (unlike a context-insensitive
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analysis) will distinguish the two call-sites of method foo on lines 7
and 9. This means that the analysis will treat foo separately for two
cases: that of its argument, o, pointing to anything someobj1 may
point to, and that of o pointing to anything someobj2 may point to.

class A {1

void foo(Object o) { ... }2

}3

4

class Client {5

void bar(A a1, A a2) { ...6

a1.foo(someobj1);7

...8

a2.foo(someobj2);9

}10

}11

In contrast, object-sensitivity uses object allocation sites (i.e.,
labels of instructions containing a new statement) as context ele-
ments. (Hence, a better name for “object-sensitivity” might have
been “allocation-site sensitivity”.) That is, when a method is called
on an object, the analysis separates the inferred facts depending on
the allocation site of the receiver object (i.e., the object on which
the method is called), as well as other allocation sites used as con-
text. Thus, in the above example, a 1-object-sensitive analysis will
analyze foo separately depending on the allocation sites of the ob-
jects that a1 and a2 may point to. It is not apparent from the above
fragment neither whether a1 and a2 may point to different objects,
nor to how many objects: the allocation site of the receiver object
may be remote and unrelated to the method call itself. Similarly, it
is not possible to compare the precision of an object-sensitive and
a call-site sensitive analysis in principle. In this example, it is not
even clear whether the object sensitive analysis will examine all
calls to foo as one case, as two, or as many more, since this de-
pends on the allocation sites of all objects that the analysis itself
computes to flow into a1 and a2.

Note that our above description has been vague: “the analysis
separates ... facts depending on the allocation site of the receiver
object ... as well as other allocation sites”. What are these “other
allocation sites”? The first contribution of our paper consists of rec-
ognizing that there is confusion in the literature regarding this topic.
The original definition of object-sensitivity (see [13], Fig.6, p.12.)
defines the context of a method call to be the allocation site of the
receiver object obj, the allocation site of the allocator object (obj′)
of obj, (i.e., the receiver object of the method that made the alloca-
tion of obj), the allocation site of the allocator object of obj′, and
so on. Nevertheless, subsequent “object-sensitive” analyses (e.g.,
[5, 8, 10, 20], among many) maintain the fundamental premise of
using allocation sites as context elements, yet differ in which allo-
cation sites are used. For instance, the 2-object-sensitive analysis in
the P framework [7, 9] uses as method context the allocation
site of the receiver object and the allocation site of the caller object
(i.e., an object of class Client, and not A, in our example).

In this paper, we offer a unified formal framework that captures
the object-sensitive analyses defined in the literature and allows a
deeper understanding of their differences. Additionally, we imple-
ment an array of object-sensitive analyses and draw insights about
how the choice of context relates to scalability and precision. We
discover that the seemingly simple difference of how an analy-
sis context is chosen results in large differences in precision and
performance. We use the name full-object sensitivity to refer to (a
slight generalization of) the original statement of object-sensitivity
by Milanova et al. We argue that full-object sensitivity is an excel-
lent choice in the design space, while the choice of context made in
past actual implementations is sub-optimal and results in substan-
tial loss of precision. Concretely, a practical outcome of our work
is to establish a 2-full-object-sensitive analysis with a 1-object sen-
sitive heap (shortened to “2full+1H”) as an analysis that is often

(though not always) feasible with current technology and impres-
sively precise.

Perhaps even more importantly, our understanding of the impact
of context on the effectiveness of an analysis leads to defining a new
variant that combines scalability with good precision. Namely, we
introduce the idea of a type-sensitive analysis, which is defined to
be directly analogous to an object-sensitive analysis, yet approxi-
mates (some) context elements using types instead of full allocation
sites. In contrast to past uses of types in points-to analysis (e.g.,
[1, 15, 21] and see Ryder [17] for several examples) we demon-
strate that the types used as contexts should not be the types of the
corresponding objects. Instead, the precision of our type-sensitive
analysis is due to replacing the allocation site of an object o (which
would be used as context in an object-sensitive analysis) with an
upper-bound of the dynamic type of o’s allocator object. The result
is a substantial improvement that establishes a new sweet spot in the
practical tradeoff of points-to analysis precision and performance.

In summary, our work makes the following contributions:

• We offer a better understanding of the concept and variations
of object-sensitive points-to analyses. Our understanding relies
on a precise formalism that captures the different object-sensitive
analyses, as well as on informal insights.

• We identify the differences in past object-sensitive analyses and
analyze the influence of these differences on precision and per-
formance. We argue that full-object-sensitivity is a substantially
better choice than others used in actual practice. We validate the
impact of full-object-sensitivity for the case of a context depth of
2. The difference is significant in terms of precision and scalabil-
ity. Our results help establish a 2full+1H analysis as the state-of-
the-art for precision in object-oriented programs, among analyses
that are often practically feasible.

• We introduce type-sensitivity, as a purposeful collapsing of the
context information of an object-sensitive analysis, in order to
improve scalability. We discuss what is a good type-sensitive
context and show that the straightforward option (of replacing an
object by its type) is catastrophically bad. Instead, we identify
an excellent choice of type context and demonstrate that it yields
a surprisingly ideal combination of precision and scalability. A
type-sensitive analysis for a context depth of 2 is several times (2x
to unboundedly high) faster than a corresponding object-sensitive
analysis, while keeping almost the same precision. In fact, the
run-time performance and scalability of a type-sensitive analysis
often exceed those of a cheap object-sensitive analysis of a lower
context depth, while yielding vastly more precision.

2. Formalizing Object-Sensitivity and Variations

We formalize analyses using an abstract interpretation over a sim-
plified base language that closely captures the key operations that
practical points-to analyses perform. For this, we use Feather-
weight Java [6] in “A-Normal” form. A-Normal Featherweight
Java is identical to ordinary Featherweight Java, except that argu-
ments to a function call must be atomically evaluable. For example,
the body return f.foo(b.bar()); becomes b1 = b.bar(); f1 =
f.foo(b1); return f1;. This shift does not change the expressive
power of the language or the nature of the analysis, but it simplifies
the semantics and brings the language closer to the intermediate
languages that practical points-to analysis implementations operate
on. Our formalism is an imperative variant (with a call stack in-
stead of continuations) of the corresponding formalism of Might,
Smaragdakis and Van Horn [12], which attempts a unified treat-
ment of control-flow analysis (in functional languages) and points-
to analysis (in imperative/OO languages).
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The grammar below describes A-Normal Featherweight Java.
Some of the Featherweight Java conventions merit a reminder: A
class declaration always names a superclass, and lists fields (dis-
tinct from those in the superclass) followed by a single constructor
and a list of methods. Constructors are stylized, always taking in as
many parameters as total fields in the class and superclasses, and
consisting of a call to the superclass constructor and assignment of
the rest of the fields, all in order.

Class ::= class C extends C′ {
−−−−−→
C′′ f ; K

−→
M}

K ∈ Konst ::= C (
−−−→
C f ){super(

−→
f ′) ;

−−−−−−−−−−−−−−−→
this. f ′′ = f ′′′;}

M ∈ Method ::= C m (
−−−→
C v ) {

−−−−→
C v ; ~s }

s ∈ Stmt ::= v = e ;ℓ | return v ;ℓ

e ∈ Exp ::= v | v. f | v.m(−→v ) | new C (−→v ) | (C)v

v ∈ Var is a set of variable names

f ∈ FieldName is a set of field names

C ∈ ClassName is a set of class names

m ∈ MethodCall is a set of method invocation sites

ℓ ∈ Lab is a set of labels

Every statement has a label, to provide a convenient way of refer-
encing program points. The function succ : Lab ⇀ Stmt yields the
subsequent statement for a statement’s label.

2.1 Concrete Semantics

We express the semantics using a small-step state machine. Figure 1
contains the state space. A state consists of a statement, a data stack
(for local variables), a store, a call-stack (recording, for each active
method invocation, the statement to return to, the context to re-
store, and the location that will hold the return value), and a current
context. Following earlier work [12], our concrete semantics antici-
pates abstraction in that variables and fields are mapped to context-
sensitive addresses, and the store maps such addresses to objects.
The purpose served by the concept of a context-sensitive address
is to introduce an extra level of indirection (through the store). In
the usual concrete semantics, every dynamic instance of a variable
or field will have a different context, making context-sensitive ad-
dresses extraneous. Nevertheless, the existence of the store makes it
easy to collapse information from different program paths, as long
as variables or fields map to the same context-sensitive address.1 In
addition to being a map from fields to context-sensitive addresses,
an object also stores its creation context. There are two different
kinds of context in this state space: a context for local (method)
variables, and a heap context, for object fields. At a first approxi-
mation, one can think of the two contexts as being the same sets.
Any infinite sets can play the role of context. By picking specific
context sets we can simplify the mapping from concrete to abstract,
as well as capture the essence of object-sensitivity.

The semantics are encoded as a small-step transition relation
(⇒) ⊆ Σ × Σ, shown in Figure 2. There is one transition rule for
each expression type, plus an additional transition rule to account
for return. Evaluation consists of finding all states reachable from
an initial state (typically a single call statement with an empty
store and binding environment). We use standard functions cons,
car, cdr, and firstn to construct and deconstruct lists/stacks. For

1 To prevent misunderstandings, we note that the extra level of indirection is
the only purpose of the store in our semantics. Specifically, our store is not
intended for modeling the Java heap and our stack is not modeling the Java
local variable stack (although it has similar structure, as it is a map over
local variables). For instance, the store is used to also map local variables
to actual values, which is the purpose of a Java stack.

ς ∈ Σ = Stmt × Stack × Store × CallStack × Context

st ∈ Stack = (Var⇀ ContSensAddr)∗

σ ∈ Store = ContSensAddr → Obj

o ∈ Obj = HContext × (FieldName ⇀ ContSensAddr)

cst ∈ CallStack = (Stmt × Context × ContSensAddr)∗

a ∈ ContSensAddr = (Var × Context) + (FieldName × HContext)

c ∈ Context is an infinite set of contexts

hc ∈ HContext is an infinite set of heap contexts.

Figure 1. State-space for A-Normal Featherweight Java.

Variable reference

([[v = v′;ℓ]], st, σ, cst, c)⇒ (succ(ℓ), st, σ′, cst, c), where

σ′ = σ + [st(v) 7→ σ(st(v′))].

Return

([[return v ;ℓ]], st, σ, cst, c)⇒ (s, cdr(st), σ′, cdr(cst), c′), where

(s, c′, aret) = car(cst) σ′ = σ + [aret 7→ σ(st(v))].

Field reference

([[v = v′. f ;ℓ]], st, σ, cst, c)⇒ (succ(ℓ), st, σ′, cst, c), where

( , [ f 7→ a f ]) = σ(st(v′)) σ′ = σ + [st(v) 7→ σ(a f )].

Method invocation

([[v = v0.m(
−→
v′);ℓ]], st, σ, cst, c)⇒ (s0, st′, σ′, cst′, c′),

where

M = [[C m (
−−−−→
C v′′ ) {

−−−−−−→
C′ v′′′ ; ~s}]] =M(o0,m)

o0 = σ(st(v0)) oi = σ(st(v′i ))

(hc0, ) = o0 c′ = merge(ℓ, hc0, c)

a′i = (v′′i , c
′) a′′j = (v′′′j , c

′)

σ′ = σ + [a′i 7→ oi] cst′ = cons((succ(ℓ), c, st(v)), cst)

st′ = cons([v′′i 7→ a′i , v
′′′
j 7→ a′′j ], st).

Object allocation

([[v = new C (
−→
v′);ℓ]], st, σ, cst, c)⇒ (succ(ℓ), st, σ′, cst, c),

where

oi = σ(st(v′i)) hc = record(ℓ, c)

~f = F (C) ai = ( fi, hc)

o′ = (hc, [ fi 7→ ai]) σ′ = σ + [st(v) 7→ o′] + [ai 7→ oi].

Casting

([[v = (C′) v′]], st, σ, cst, c)⇒ (succ(ℓ), st, σ′, cst, c), where

σ′ = σ + [st(v) 7→ σ(st(v′))].

Figure 2. Concrete semantics for A-Normal Featherweight Java.

convenience, we define a lookup of a variable in a stack to mean
a lookup in the top component of the stack, e.g., st(v) means
(car(st))(v). We also use helper functions

M : Obj ×MethodCall ⇀ Method

F : ClassName → FieldName∗.
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The former takes a method invocation point and an object and
returns the object’s method that is called at that point (which is
not known without knowing the receiver object, due to dynamic
dispatch). The latter returns a list of all fields in a class definition,
including superclass fields.

Our semantics is parameterized by two functions that manipu-
late contexts:

record : Lab × Context → HContext

merge : Lab × HContext × Context → Context

The record function is used every time an object is created, in or-
der to store a creation context with the object. The merge function
is used on every method invocation. Its first argument is the current
call statement label, while the second and third arguments are the
context of allocation of the method’s receiver object and the current
(caller’s) context, respectively. The key for different flavors of con-
text sensitivity is to specify different record and merge functions
for contexts.

For a simple understanding of the concrete semantics that yields
the natural behavior one expects, we can define contexts as just
natural numbers:

Context = HContext = N.

In that case, we need to ensure that the record and merge func-
tions never return a duplicate context. For instance, if we con-
sider labels to also map to naturals we can capture the entire his-
tory of past context creation by defining record(ℓ, c) = 2ℓ · 3c and
merge(ℓ, hc, c) = 5ℓ · 7hc · 11c. A different choice of context that
is closer to idealized (infinite context) object-sensitive semantics
consists of defining a context as a list of labels:

Context = HContext = Lab∗,

yielding a straightforward record function, while the merge func-
tion can ignore its second argument:

record(ℓ, c) = cons(ℓ, c)

merge(ℓ, hc, c) = cons(ℓ, c).

These definitions enable every variable to have a different address
for different invocations, and every object field to have a different
address for each object allocated, as expected.2

2.2 Abstract Semantics

It is now straightforward to express object-sensitive points-to anal-
yses by abstract interpretation [4] of the above semantics for an
abstract domain that maintains only finite context.

The abstract state space is shown in Figure 3. The main dis-
tinctions from the concrete state-space are that the set of contexts
is finite and that the store can return a set of objects, instead of a
single object. Generally, the abstract semantics closely mirror the
concrete.

The abstract semantics are encoded as a small-step transition
relation ({) ⊆ Σ̂ × Σ̂, shown in Figure 4. There is one abstract
transition rule for each expression type, plus an additional transition
rule to account for return. We assume the usual properties for ⊔ of
a map to sets (i.e., merging of the sets for the same value).

We similarly define abstract versions of the context-
manipulating functions:

̂record : Lab × ̂Context → ̂HContext

m̂erge : Lab × ̂HContext × ̂Context → ̂Context

2 Technically, this is true only because the FJ calculus has no iteration, so
object allocations from the same statement can only occur after a recursive
call. Thus, the string of labels for method calls is enough to ensure that
objects have a unique context.

ς̂ ∈ Σ̂ = Stmt × Ŝtack × Ŝtore × ̂CallStack × ̂Context

ŝt ∈ Ŝtack = (Var⇀ ̂ContSensAddr)
∗

σ̂ ∈ Ŝtore = ̂ContSensAddr → P
(
Ôbj
)

ô ∈ Ôbj = ̂HContext × (FieldName ⇀ ̂ContSensAddr)

ĉst ∈ ̂CallStack = (Stmt × ̂Context × ̂ContSensAddr)
∗

â ∈ ̂ContSensAddr = (Var × ̂Context) + (FieldName × ̂HContext)

ĉ ∈ ̂Context is a finite set of contexts

ĥc ∈ ̂HContext is a finite set of heap contexts.

Figure 3. Object-sensitive analysis state-space for A-Normal
Featherweight Java.

Variable reference

([[v = v′;ℓ]], ŝt, σ̂, ĉst, ĉ){ (succ(ℓ), ŝt, σ̂′, ĉst, ĉ), where

σ̂′ = σ̂ ⊔ [ŝt(v) 7→ σ̂(ŝt(v′))].

Return

([[return v ;ℓ]], ŝt, σ̂, ĉst, ĉ){ (s, cdr(ŝt), σ̂′, cdr(ĉst), ĉ′), where

(s, ĉ′, âret) = car(ĉst) σ̂′ = σ̂ ⊔ [âret 7→ σ̂(ŝt(v))].

Field reference

([[v = v′. f ;ℓ]], ŝt, σ̂, ĉst, ĉ){ (succ(ℓ), ŝt, σ̂′, ĉst, ĉ), where

( , [ f 7→ â f ]) = σ̂(ŝt(v′)) σ̂′ = σ̂ ⊔ [ŝt(v) 7→ σ̂(â f )].

Method invocation

([[v = v0.m(
−→
v′);ℓ]], ŝt, σ̂, ĉst, ĉ){ (s0, ŝt

′
, σ̂′, ĉst

′
, ĉ′),

where

M = [[C m (
−−−−→
C v′′ ) {

−−−−−−→
C′ v′′′ ; ~s}]] =M(ô0,m)

ô0 ∈ σ̂(ŝt(v0)) ôi = σ̂(ŝt(v′i))

(ĥc0, ) = ô0 ĉ′ = m̂erge(ℓ, ĥc0, ĉ)

â′i = (v′′i , ĉ
′) â′′j = (v′′′j , ĉ

′)

σ̂′ = σ̂ ⊔ [â′i 7→ ôi] ĉst
′
= cons((succ(ℓ), ĉ, ŝt(v)), ĉst)

ŝt
′
= cons([v′′i 7→ â′i , v

′′′
j 7→ â′′j ], ŝt).

Object allocation

([[v = new C (
−→
v′);ℓ]], ŝt, σ̂, ĉst, ĉ){ (succ(ℓ), ŝt, σ̂′, ĉst, ĉ),

where

ôi = σ̂(ŝt(v′i )) ĥc = ̂record(ℓ, ĉ)

~f = F (C) âi = ( fi, ĥc)

ô′ = (ĥc, [ fi 7→ âi]) σ̂′ = σ̂ ⊔ [ŝt(v) 7→ ô′] ⊔ [âi 7→ ôi].

Casting

([[v = (C′) v′]], ŝt, σ̂, ĉst, ĉ){ (succ(ℓ), ŝt, σ̂′, ĉst, ĉ), where

σ̂′ = σ̂ ⊔ [ŝt(v) 7→ σ̂(ŝt(v′))].

Figure 4. Object-sensitivity abstract semantics for A-Normal
Featherweight Java.
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The abstract ̂record and m̂erge functions capture the essence of
object-sensitivity: an object-sensitive analysis is distinguished by
its storing a context together with every allocated object (via
̂record), and by its retrieving that context and using it as the basis

for the analysis context of every method dispatched on the object
(via m̂erge).

2.3 Analysis Variations and Observations

With the above framework, we can concisely characterize all past
object-sensitive analyses, as well as discuss other possibilities. All

variations consist of only modifying the definitions of ̂Context,
̂HContext, ̂record, and m̂erge.

Original Object Sensitivity. Milanova et al. [13] gave the original
definition of object-sensitivity but did not implement the analysis
for context depths greater than 1. Taken literally, the original defi-
nition prescribes that, for an n-object-sensitive analysis, the regular
and the heap context consist of n labels:

̂Context = ̂HContext = Labn,

while ̂record just keeps the first n elements of the context defined
in our concrete semantics, and m̂erge discards everything but the
receiver object context:

̂record(ℓ, ĉ) = cons(ℓ, firstn−1(ĉ))

m̂erge(ℓ, ĥc, ĉ) = ĥc.

In practical terms, this definition has several consequences:

• The only labels used as context are labels from an object allo-

cation site, via the ̂record function.

• On a method invocation, only the (heap) context of the receiver
object matters.

• The heap context of a newly allocated object is derived from the
context of the method doing the allocation, i.e., from the heap
context of the object that is doing the allocation.

In other words, the context used to analyze a method consists
of the allocation site of the method’s receiver object, the allocation
site of the object that allocated the method’s receiver object, the
allocation site of the object that allocated the object that allocated
the method’s receiver object, and so on. In the next section we
discuss whether this is a good choice of context for scalability and
precision.

Past Implementations of Object Sensitivity. For an object-
sensitive analysis with context depth 1, the context choice is ob-
vious. The m̂erge function has to use some of the receiver object
context, or the analysis would not be object-sensitive (just call-site-
sensitive), and the receiver object context consists of just the ob-
ject’s allocation site.

For analyses with context depth n > 1, however, the definitions

of m̂erge and ̂record can vary significantly. Actual implementations
of such analyses deviated from the Milanova et al. definition. No-
tably, the P framework [7, 9] (which provides the most-used
such implementation available) merges the allocation site of the
receiver object with multiple context elements from the caller ob-
ject context when analyzing a method. This results in the following
functions:

̂record(ℓ, ĉ) = cons(ℓ, firstn−1(ĉ))

m̂erge(ℓ, ĥc, ĉ) = cons(car(ĥc), firstn−1(ĉ)).

The practically interesting case is of n = 2. (Higher values are well
outside current technology if the analysis is applied as defined, i.e.,
the context depth applies to all program variables.) The above defi-
nition then means that every method is analyzed using as context a)

the allocation site of the receiver object; and b) the allocation site
of the caller object.

Heap Context, Naming, and Full-Object Sensitivity. The above

analyses defined the heap context ( ̂HContext) and the regu-

lar/method context ( ̂Context) to be the same set, namely Labn.
There are other interesting possibilities, however. Since the m̂erge
function has access to a heap context and to a regular context (and
needs to build a new regular context) the heap context can be shal-
lower. For instance, Lhoták’s exploration of object-sensitive analy-
ses [7] studies in depth analyses where the heap context is always
just a single allocation site:

̂HContext = Lab

̂Context = Labn

̂record(ℓ, ĉ) = ℓ

m̂erge(ℓ, ĥc, ĉ) = cons(ĥc, firstn−1(ĉ)).

In fact, the above definition is what is most commonly called an
“object-sensitive analysis” in the literature! The analyses we saw
earlier are colloquially called “object-sensitive analyses with a
context-sensitive (or object-sensitive) heap”. That is, the points-
to analysis literature by convention uses context to apply only to
methods, while heap objects are represented by just their allocation
site. Adding more context to object fields than just the object al-
location site is designated with suffixes such as “context-sensitive
heap” or “heap cloning” in an analysis description. Thus, one needs
to be very careful with naming conventions. We summarize ours at
the end of this section.

Another interesting possibility is that of keeping a deeper con-
text for heap objects than for methods. The most meaningful case
in practice is the one where the heap object keeps one extra context
element:

̂HContext = Labn+1

̂Context = Labn

̂record(ℓ, ĉ) = cons(ℓ, ĉ).

(The m̂erge function can vary orthogonally, as per our earlier dis-
cussion.) For n = 1, this is Lhoták’s “1obj+H” analysis, which is
currently considered the best trade-off between scalability and pre-
cision [8], and to which we refer repeatedly in our experimental
evaluation of Section 5

This latest variation complicates naming even more. In Lhoták’s
detailed naming scheme, the above analysis would be an “n-object-
sensitive analysis with an (n-)object-sensitive heap”, while our

standard n-object-sensitive analysis (with ̂Context = ̂HContext =

Labn) is called an “n-object-sensitive analysis with an n− 1-object-
sensitive heap”. The reason for the off-by-one convention is his-
torical: it is considered self-evident in the points-to analysis com-
munity that the static abstraction for a heap object will consist of
at least its allocation site label. Therefore, the heap context is con-
sidered to be n − 1 labels, when the static abstraction of an object
consists of n labels in total.

In the rest of this paper, we adopt the standard terminology of
the points-to analysis literature. That is, we talk of an “n-object-
sensitive analysis with an n− 1-object-sensitive heap” to mean that
̂Context = ̂HContext = Labn. Furthermore, to distinguish between

the two dominant definitions of a m̂erge function (Milanova et al.’s,
as opposed to that of the P framework) we refer to a full-
object-sensitive analysis vs. a plain-object-sensitive analysis. A
full-object-sensitive analysis is characterized by a m̂erge function:

m̂erge(ℓ, ĥc, ĉ) = ĥc.
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That is, the “full” object abstraction of the receiver object is used as
context for the method invoked on that object. In contrast, a plain-
object-sensitive analysis merges information from the receiver and
the caller objects:

̂record(ℓ, ĉ) = cons(ℓ, firstn−1(ĉ))

m̂erge(ℓ, ĥc, ĉ) = cons(car(ĥc), firstn−1(ĉ)).

Thus, the original object-sensitivity definition by Milanova et al. is
a full-object-sensitive analysis, while the practical object-sensitive
analysis of the P framework is plain-object-sensitive. We ab-
breviate plain-object-sensitive analyses for different context and
heap context depths to “nplain+mH” and full-object-sensitive anal-
yses to “nfull+mH”. When the two analyses coincide, we use the
abbreviation “nobj+mH”.

Discussion. Finally, note that our theoretical framework is not
limited to traditional object-sensitivity, but also encompasses call-
site sensitivity. Namely, the m̂erge function takes the current call-
site label as an argument. None of the actual object-sensitive analy-
ses we saw above use this argument. Thus, our framework suggests
a generalized interpretation of what constitutes an object-sensitive
analysis. We believe that the essence of object-sensitivity is not in
“only using allocation-site labels as context” but in “storing an ob-
ject’s creation context and using it at the site of a method invoca-
tion” (i.e., the functionality of the m̂erge function). We expect that
future analyses will explore this direction further, possibly combin-
ing call-site and allocation-site information in interesting ways.

Our framework also allows the same high-level structure of an
analysis but with different context information preserved. Section 4
pursues a specific direction in this design space, but generally we
can produce analyses by using as context any abstractions com-

putable from the arguments to functions ̂record and m̂erge (with ap-

propriate changes to the ̂Context and ̂HContext sets). For instance,
we can use as context coarse-grained program location informa-
tion (module identifiers, packages, user annotations) since these are
uniquely identified by the current program statement label, ℓ. Simi-
larly, we can make different context choices for different allocation

sites or call sites, by defining the ̂record and m̂erge functions con-
ditionally on the supplied label. In fact, there are few examples of
context-sensitive points-to analyses that cannot be captured by our
framework, and simple extensions would suffice for most of those.
For instance, a context-sensitive points-to analysis that employs as
context a static abstraction of the arguments of a method call (and
not just of the receiver object) is currently not directly expressible
in our formalism. (This approach has been fruitful in different static
analyses, e.g., for type inference [1, 15].) Nevertheless, it is a sim-
ple matter to adjust the form of the m̂erge function and the “method
invocation” rule in order to allow the method call context to also be
a function of the heap contexts of argument objects.

3. Insights on Context Choice

With the benefit of our theoretical map of context choices for
object-sensitivity, we next discuss what makes a scalable and pre-
cise analysis in practice.

3.1 Full-Object-Sensitivity vs. Plain-Object-Sensitivity

The first question in our work is how to select which context ele-
ments to keep—i.e., what is the best definition of the m̂erge func-
tion for practical purposes. We already saw the two main distinc-
tions, in the form of full-object-sensitive vs. plain-object-sensitive
analyses. Consider the standard case of a 2-object-sensitive anal-
ysis with a 1-object-sensitive heap, i.e., per the standard naming

convention, ̂Context = ̂HContext = Lab2. The 2full+1H analysis
will examine every method using as context the allocation site of

the method’s receiver object, and the allocation site of the alloca-
tor of this receiver object. (Recall that all information for method
invocations under the same context will be merged, while informa-
tion under different contexts will be kept separate.) In contrast the
2plain+1H analysis examines every method using as context the
allocation site of the receiver object, and the allocation site of the
caller object.

The 2full+1H analysis has not been implemented or evaluated
in practice before. Yet with an understanding of how context is em-
ployed, there are strong conceptual reasons why one may expect
2full+1H to be superior to 2plain+1H. The insight is that context
serves the purpose of yielding extra information to classify dy-
namic paths, at high extra cost for added context depth. Thus, for
context to serve its purpose, it needs to be a good classifier, splitting
the space of possibilities in roughly uniform partitions. When mix-
ing context elements (allocation site labels) from the receiver and
the caller object (as in the 2plain+1H analysis), the two context el-
ements are likely to be correlated. High correlation means that a
2-object-sensitive analysis is effectively reduced to a high-cost 1-
object-sensitive one. In a simple case of context correlation, an ob-
ject calls another method on itself: the receiver object and the caller
object are the same.3 There are many more patterns of common ob-
ject correlation—knowing that we are executing a method of object
p almost always yields significant information about which object
q is the receiver of a method call. Wrapper patterns, proxy pat-
terns, the Bridge design pattern, etc., all have pairs of objects that
are allocated and used together. For such cases of related objects,
one can see the effect in intuitive terms: The traditional mixed con-
text of a 2plain+1H analysis classifies method calls by asking ob-
jects “where were you born and where was your sibling born?” A
2full+1H analysis asks “where were you born and where was your
parent born?” The latter is a better differentiator, since birth loca-
tions of siblings are more correlated.

3.2 Context Depth and Analysis Complexity

The theme of context element correlation and its effect on precision
is generally important for analysis design. The rule of thumb is
that context elements should be as little-correlated as possible for
an analysis with high precision. To see this consider how context
depth affects the scalability of an analysis. There are two opposing
forces when context depth is increased. On the one hand, increased
precision may help the analysis avoid combinatorial explosion. On
the other hand, when imprecision will occur anyway, a deeper
context analysis will be significantly less scalable.

For the first point, consider the question “when can an analysis
with a deeper context outperform one with a shallower context?”
Concretely, are there cases when a 2-object-sensitive analysis will
be faster or more scalable than a 1-object-sensitive analysis (for
otherwise the same analysis logic, i.e., both plain-obj or full-obj)?
Much of the cost of evaluating an analysis is due to propagating
matching facts. Consider, for instance, the “Variable reference”
rule from our abstract semantics in Figure 4, which results in
an evaluation of the form: σ̂′ = σ̂ ⊔ [ŝt(v) 7→ σ̂(ŝt(v′))]. For
this evaluation to be faster under a deeper context, the lookup
σ̂(ŝt(v′)) should return substantially fewer facts, i.e., the analysis
context should result in much higher precision. Specifically two
conditions need to be satisfied. First, the more detailed context
should partition the facts well: the redundancy should be minimal
between partitions in context-depth-2 that would project to the
same partition with context depth 1. Intuitively, adding an extra
level of context should not cause all (or many) facts to be replicated

3 This case can be detected statically by the analysis, and context repetition
can be avoided. This simple fix alone is not sufficient for reliably reducing
the imprecision of a 2plain+1H analysis, however.
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for all (or many) extra context elements. Second, fewer facts should
be produced by the rule evaluation at context depth 2 relative to
depth 1, when compared after projection down to depth-1 facts. In
other words, going to context depth 2 should be often enough to
tell us that some object does not in fact flow to a certain 1-context-
sensitive variable, because the assignment is invalid given the more
precise context knowledge.

In case of imprecision, on the other hand, the deeper context
will almost always result in a combinatorial explosion of the pos-
sible facts and highly inefficient computation. When going from a
1obj+H analysis to a 2full+H or 2plain+H, we have every fact an-
alyzed in up to N times more contexts (where N is the total number
of context elements, i.e., allocation sites). As a rule of thumb, ev-
ery extra level of context can multiply the space consumption and
runtime of an analysis by a factor of N, and possibly more, since
the N-times-larger collections of facts need to be used to index in
other N-times-larger collections, with indexing mechanisms (and
possibly results) that may not be linear.

It is, therefore, expected that an analysis with deeper context
will perform quite well when it manages to keep precise facts, while
exploding in runtime complexity when the context is not sufficient
to maintain precision. Unfortunately, there are inevitable sources
of imprecision in any real programming language—these include
reflection (which is impossible to handle soundly and precisely),
static fields (which defeat context-sensitivity), arrays, exceptions,
etc. When this imprecision is not well-isolated and affects large
parts of a realistic program, the points-to analysis will almost cer-
tainly fail (within any reasonable time and space bound). This pro-
duces a scalability wall effect: a given analysis on a program will
either terminate quickly or will fail to terminate “ever” (in practi-
cal terms). Input characteristics of the program (e.g., size metrics)
are almost never good predictors of whether the program will be
easy to analyze, as this property depends directly on the induced
analysis imprecision.

The challenge then becomes whether we can maintain high
precision while reducing the possibility for a combinatorial blowup
of analysis facts due to deeper context. We next introduce a new
approach in this direction.

4. Type-Sensitivity

If an analysis with a deeper context by nature results in a combina-
torial explosion in complexity, then a natural step is to reduce the
base of the exponential function. Context elements in an object-
sensitive analysis are object allocation sites, and typical programs
have too many allocation sites, making the product of the number
of allocation sites too high. Therefore, a simple idea for scalability
is to use coarser approximations of objects as context, instead of
complete allocation sites. This would collapse the possible combi-
nations down to a more manageable space, yielding improved scal-
ability. The most straightforward static abstraction that can approx-
imate an object is a type, which leads to our idea of a type-sensitive
analysis.

4.1 Definition of Type-Sensitive Analysis

A type-sensitive analysis is almost identical to an object-sensitive
analysis, but whereas an object-sensitive analysis would keep an
allocation site as a context element, a type-sensitive analysis keeps
a type instead.4 Consider, for instance, a 2-type-sensitive analysis
with a 1-type-sensitive heap (henceforth “2type+1H”). The method
context for this analysis consists of two types. (For now we do not
care which types. We discuss later what types yield high precision.)

4 Despite the name similarity, our type-sensitive points-to analysis has no
relationship to Reppy’s “type-sensitive control-flow analysis” [16], which
uses types to filter control flow facts in a context-insensitive analysis.

Expressed in our framework, the 2type+1H analysis has:

̂HContext = Lab × ClassName

̂Context = ClassName2.

Note again the contrast of the standard convention of the points-to
analysis community and the structure of abstractions: the 2type+1H
analysis also includes an allocation site label in the static abstrac-
tion of an object—this aspect is considered so essential that it is
not reflected on the analysis name. Approximating the allocation
site of the object itself by a type would be possible, but detrimental
for precision.

Generally, type-contexts and object-contexts can be merged at
any level, as long as the m̂erge function can be defined. An in-
teresting choice is an analysis that merely replaces one of the two
allocation sites of 2full+1H with a type, while leaving all the rest of
the context elements intact. We call this a 1-type-1-object-sensitive
analysis with a 1-object-sensitive heap, and shorten the name to
“1type1obj+1H”. That is, a 1type1obj+1H analysis has:

̂HContext = Lab2

̂Context = Lab × ClassName.

The 2type+1H and the 1type1obj+1H analyses are the most
practically promising type-sensitive analyses with a context depth
of 2. Their context-manipulation functions can be described with
the help of an auxiliary function

T : Lab→ ClassName,

which retrieves a type from an allocation site label. For 2type+1H,
the context functions become:5

̂record(ℓ, ĉ = [C1,C2]) = [ℓ,C1]

m̂erge(ℓ, ĥc = [ℓ′,C], ĉ) = [T (ℓ′),C],

while for 1type1obj+1H, the two functions are:

̂record(ℓ, ĉ = [ℓ′,C]) = [ℓ, ℓ′]

m̂erge(ℓ, ĥc = [ℓ1, ℓ2], ĉ) = [ℓ1,T (ℓ2)],

In other words, the two analyses are variations of 2full+1H (and
not of 2plain+1H), with some of the context information down-
graded to be types instead of allocation site labels. The function T
makes opaque the method we use to produce a type from an allo-
cation site, which we discuss next.

4.2 Choice of Type Contexts

Just having a type as a context element does not tell us how good
the context will be for ensuring precision—the choice of type is of
paramount importance. The essence of understanding what consti-
tutes a good type context is the question “what does an allocation
site tell us about types?” After all, we want to use types as a coarse
approximation of allocation sites, so we want to maintain most of
the information that allocation sites imply regarding types.

The identity of an allocation site, i.e., an instruction “new A()”
inside class C, gives us:

• the dynamic type A of the allocated object

• an upper bound C on the dynamic type of the allocator object.
(Since the allocation site occurs in a method of class C, the
allocator object must be of type C or a subclass of C that does
not override the method containing the allocation site.)

5 We use common list and pattern-matching notation to avoid long expres-

sions. E.g., “ ̂record(ℓ, ĉ = [C1,C2])” means “when the second argument, ĉ,

of ̂record is a list of two elements, C1 and C2 ...”.
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A straightforward option would be to define the T function to
return just the type of the allocation site, i.e., type A above. This
is an awful design decision, however. To see why, consider first the
case of a 2type+1H analysis. When we analyze a method context-
sensitively and the first element of the context is the type of the
receiver object, we are effectively wasting most of the potential of
the context. The reason is that the method under analysis already
gives us enough information about the type of the receiver object—
i.e., the identity of the method and the type of the receiver are
closely correlated. If, for instance, the method being analyzed is
“B::foo” (i.e., method foo defined in class B) then we already have
a tight upper bound on the dynamic type of the receiver object:
the receiver object’s type has to be either B or a subclass of B that
does not override method foo. Since we want to pick a context
that is less correlated with other information and yields meaningful
distinctions, a 2type+1H analysis should have its T function return
the type in which the allocation takes place, i.e., class C above.

A similar argument applies to a 1type1obj+1H analysis. In this
analysis the method context consists of the receiver object, as well
as a type. We want 1type1obj+1H to be a good approximation of
2full+1H, which would keep two allocation sites instead (that of the
receiver object and that of the receiver object’s allocator object).
Thus the two allocation sites of 2full+1H give us the following
information about types:

• the dynamic type of the receiver object

• an upper bound on the dynamic type of the receiver object’s
allocator object

• the dynamic type of the receiver object’s allocator object

• an upper bound on the dynamic type of the receiver object’s
allocator’s allocator object.

The first two pieces of information, above, come from the iden-
tity of the receiver object’s allocation site, and, thus, are kept intact
in a 1type1obj+1H analysis. The question is which of the last two
types we would like to keep. The high correlation of the second and
third bullet point above (upper bound of a type and the type itself)
makes it clear that we want to keep the type of the last bullet. That
is, in all scenarios, the function T (l), when l represents an instruc-
tion “new A()” inside class C, should return type C and not type A.
We validate this understanding experimentally as part of the results
of the next section.

5. Implementation and Evaluation

We implemented and evaluated several object-sensitive analyses
for a context depth up to 2, which meets the limit of practicality
for real-world programs. The questions we want to answer relate to
the main new ideas presented so far:

• Is full-object-sensitivity advantageous compared to plain-
object-sensitivity in terms of precision and performance, as ar-
gued in Section 3.1? (Recall that full-object-sensitive analyses
had not been implemented in the past for context depth greater
than 1.)

• Does the definition of function T matter, as predicted in Sec-
tion 4.2?

• Does type-sensitivity achieve higher scalability than regular
object-sensitive analyses while maintaining most of the preci-
sion?

5.1 Setting

Our implementation is in the context of the D framework [2, 3].
D uses the Datalog language to specify analyses declaratively.
Additionally, D employs an explicit representation of relations,

listing all the elements of tuples of related elements explicitly, as
opposed to employing Binary Decision Diagrams (BDDs), which
have often been used in points-to analysis [7, 8, 22, 23]. As we
showed in earlier work [3] BDDs are only useful when the selected
context abstractions introduce high redundancy, while analyses that
take care to avoid unnecessary imprecision are significantly faster
and scalable in an explicit representation. D is a highly scalable
framework and implements very efficiently the most complex and
precise context-sensitive analyses in current use [3]. D achieves
functional equivalence (identical results) with Lhoták and Hen-
dren’s P system [8], which is another feature-rich framework
for precise analyses, but based on an entirely different architecture
(using semi-declarative analysis specifications and BDDs to repre-
sent relations). This equivalence of results is useful for establishing
that an analysis is correct and meaningful, which is a property far
from granted for complex points-to analysis algorithms.

We use a 64-bit machine with a quad-core Xeon E5530 2.4GHz
CPU (only one thread was active at a time). The machine has 24GB
of RAM, but we have found no analysis that terminates (within
two hours, but also occasionally allowing up to 12) after occupying
more than 12GB of memory. Most analyses require less than 2GB,
with only the longest running analyses (over 1000 seconds run
time) occasionally needing more memory. This is indicative of the
scalability wall described earlier: the explosion of contexts without
a corresponding increase in precision makes an analysis intractable
quite abruptly.

We analyzed the DaCapo benchmark programs, v.2006-10-
MR2, with JDK 1.4 (j2re1.4.2 18). These benchmarks are the
largest in the literature on context-sensitive points-to analysis.

We analyzed all benchmarks except hsqldb and jython with the
full D functionality and support for language features, includ-
ing native methods, reflection (a refinement of Livshits et al.’s algo-
rithm [11] with support for reflectively invoked methods and con-
structors), and precise exception handling [2]. Generally our set-
tings are a superset (i.e., more complete feature support) than prior
published benchmarks on D [2, 3]. (The D language fea-
ture support is among the most complete in the literature, as doc-
umented in detail in the past [3].) Hsqldb and jython could not be
analyzed with reflection analysis enabled—hsqldb cannot even be
analyzed context-insensitively and jython cannot even be analyzed
with the 1obj analysis. This is due to vast imprecision introduced
when reflection methods are not filtered in any way by constant
strings (for classes, fields, or methods) and the analysis infers a
large number of reflection objects to flow to several variables. (E.g.,
in the theoretically worst case 244 sites in jython can be inferred to
allocate over 1.1 million abstract objects.) For these two applica-
tions, our analysis has reflection reasoning disabled. Since hsqldb
in the DaCapo benchmark code has its main functionality called via
reflection, we had to configure its entry point manually.

5.2 Full-object-sensitivity vs. Plain-object-sensitivity

Figure 5 shows the precision comparison of a 2plain+1H and a
2full+1H analysis for a subset of the DaCapo benchmarks. For
reference, we also include a context-insensitive, 1-object-sensitive
and 1obj+1H analysis, and indicate how the metrics change from an
analysis to the next more precise one. The metrics are a mixture of
core points-to statistics and client analysis metrics, resembling the
methodology of Lhoták and Hendren [8]. For ease of reference, we
highlight (in bold) some of the most important metrics: the number
of methods inferred to be reachable (including both application
methods and methods in the standard Java library), the average var-
points-to set (i.e., how many allocation sites a variable can refer
to), the total number of call sites that are found to be polymorphic
(i.e., for which the analysis cannot pinpoint a single method as the
target of the dynamic dispatch), and the total number of casts that
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insensitive 1obj 1obj+H 2plain+1H 2full+1H

a
n
tl
r

call-graph edges 43055 -559 -1216 -1129 -368
reachable methods 5758 -29 -37 -62 -21
total reachable virtual call sites 27823 -128 -96 -272 -139
total polymorphic call sites 1326 -38 -22 -38 -68

application reachable virtual call sites 16393 0 0 0 -9
application polymorphic call sites 851 0 0 0 0
total reachable casts 1038 -14 -15 -33 -6
total casts that may fail 844 -136 -94 -144 -64

application reachable casts 308 0 0 0 -1
application casts that may fail 262 -8 -38 -66 -23
average var-points-to 216.71 24.7 15.1 8.5 8.2

average application var-points-to 327.27 20.8 15.3 8.8 8.5

c
h
a
rt

call-graph edges 44930 -1239 -2063 -2287 -765
reachable methods 8502 -76 -87 -115 -53

total reachable virtual call sites 23944 -233 -327 -368 -172
total polymorphic call sites 1218 -90 -24 -83 -119

application reachable virtual call sites 3649 0 -8 -47 -12
application polymorphic call sites 110 -4 -13 -10 -4
total reachable casts 1728 -22 -38 -58 -7
total casts that may fail 1457 -182 -252 -164 -120

application reachable casts 232 0 -4 -21 -1
application casts that may fail 196 -17 -64 -32 -38
average var-points-to 98.35 36.0 20.1 9.4 6.7

average application var-points-to 55.35 27.2 14.4 5.0 2.8

e
c
lip

s
e

call-graph edges 36057 -1342 -2499 -1900 -803
reachable methods 6541 -67 -153 -83 -49

total reachable virtual call sites 18447 -291 -315 -356 -226
total polymorphic call sites 873 -96 -25 -38 -89

application reachable virtual call sites 5959 -101 -53 -31 -44
application polymorphic call sites 292 -40 -9 -3 -3
total reachable casts 1270 -21 -21 -27 -24
total casts that may fail 1001 -213 -103 -133 -51
application reachable casts 476 -3 -2 -8 0
application casts that may fail 362 -61 -55 -58 1
average var-points-to 102.7 21.8 16.1 9.8 9.1

average application var-points-to 104.1 22.9 15.8 9.6 9.4

lu
in

d
e
x

call-graph edges 24069 -663 -1155 -1119 -354
reachable methods 4742 -31 -34 -64 -20

total reachable virtual call sites 12675 -193 -117 -276 -130
total polymorphic call sites 507 -50 -22 -38 -66

application reachable virtual call sites 1267 -65 -29 -4 0
application polymorphic call sites 39 -10 0 0 0
total reachable casts 790 -14 -15 -33 -5
total casts that may fail 627 -129 -69 -96 -43
application reachable casts 63 0 -1 0 0
application casts that may fail 46 -3 -18 -13 -2
average var-points-to 69.66 14.7 10.8 6.5 6.3

average application var-points-to 90.05 9.2 5.9 3.0 2.9

p
m

d

call-graph edges 30990 -527 -1329 -809 -1043
reachable methods 6158 -34 -44 -37 -62

total reachable virtual call sites 16029 -144 -163 -208 -280
total polymorphic call sites 576 -42 -26 -21 -107
application reachable virtual call sites 4545 -22 -87 -5 -83
application polymorphic call sites 93 -2 -10 -4 -24
total reachable casts 1260 -15 -15 -13 -27
total casts that may fail 1066 -137 -97 -94 -78
application reachable casts 531 -2 -2 0 -2
application casts that may fail 485 -11 -43 -32 -21
average var-points-to 88.08 22.3 15.8 8.2 7.3

average application var-points-to 102.3 29.7 26.1 8.5 8.0

Figure 5. Precision metrics for 2plain+1H and 2full+1H for a subset of the DaCapo benchmarks. The last two metrics (“average ...”) are in
absolute numbers, the rest are given relative to the immediately preceding column (not relative to the numbers in the “insensitive” column).
All metrics are end-user (i.e., context-insensitive) metrics. Var-points-to is the main relation of a points-to analysis, linking a variable to the
allocation sites it may be referring to. (The average is over variables.) “Reachable methods” is the same as call-graph nodes, hence the first
two metrics show how precise is the on-the-fly inferred call-graph. “Polymorphic call-sites” are those for which the analysis cannot statically
determine a unique receiver method. “Casts that may fail” are those for which the analysis cannot statically determine that they are safe.
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may fail at run-time (i.e., for which the analysis cannot statically
determine that the cast is always safe). These metrics paint a fairly
complete picture of relative analysis precision, although the rest
of the metrics are useful for framing (e.g., for examining how the
statistics vary between application classes and system libraries, for
comparing to the total number of reachable call sites, etc.).

As can be seen in Figure 5, 2full+1H is almost always signif-
icantly more precise than 2plain+1H, even though both analyses
have the same context depth. The difference in precision is quite
substantial: For several metrics and programs (e.g., multiple met-
rics for pmd, or reduction in total polymorphic virtual call sites for
many programs), the difference between full-object-sensitivity and
plain-object-sensitivity is as large as any other single-step incre-
ment in precision (e.g., from 1-obj to 1obj+H).

Perhaps most impressively, this precision is accompanied by
substantially improved performance. Figure 6 shows the running
time of the analyses, together with two key internal complexity
metrics: the number of edges in the context-sensitive callgraph
(i.e., how many context-qualified methods are inferred to call how
many other context-qualified methods) and the size of the context-
sensitive var-points-to set, i.e., the total number of facts inferred
that relate a context-qualified variable with a context-qualified al-
location site.

The running time of 2full+1H is almost always much lower
than that of 2plain+1H. The case of “chart” is most striking, with
2full+1H finishing in well under a third of the time of 2plain+1H,
while achieving the much higher precision shown in Figure 5.
The internal metrics show that 2full+1H makes excellent use of
its context and has substantially lower internal complexity than
2plain+1H. Note that the statistics for context-sensitive var-points-
to are quite low, explaining why the analysis is faster, since each
variable needs to be examined only in a smaller number of contexts.
A second reason why such internal metrics are important is that
the performance of an analysis depends very much on algorithmic
and data structure implementation choices, such as whether BDDs
are used to represent large relations. Internal metrics, on the other
hand, are invariant and indicate a complexity of the analysis that
often transcends representation choices.

It is easy to see from the above figures that full-object-
sensitivity makes a much better choice of context than plain-object-
sensitivity, resulting in both increased precision and better perfor-
mance. In fact, we have found the 2full+1H analysis to be a sweet
spot in the current set of near-feasible analyses in terms of preci-
sion. Adding an extra level of context sensitivity for object fields,
yielding a 2full+2H analysis, adds extremely little precision to the
analysis results while greatly increasing the analysis cost.

In fact, for the benchmarks shown, 2full+1H is even signifi-
cantly faster than the much less precise 1obj+H. Nevertheless, the
same is not true universally. Of the 10 DaCapo benchmarks in our
evaluation set, 2full+1H handles 6 with ease (the 5 shown plus
“lusearch” which has very similar behavior to “luindex”) but its
running time explodes for the other 4. The 2plain+1H analysis ex-
plodes at least as badly for the 4 benchmarks, but a 1obj+H anal-
ysis handles 9 out of 10, and a 1-obj analysis handles all of them.
In short, the performance (and internal complexity) of a highly-
precise but deep-context analysis is bimodal: when precision is
maintained, the analysis performs admirably. When, however, sig-
nificant imprecision creeps in, the analysis does badly, since the
number of contexts increases in combinatorial fashion.

Therefore, 2full+1H achieves excellent precision but is not a
good point in the design space in terms of scalability. (In the past,
the only fully scalable uses of object-sensitivity with depth > 1
have applied deep context to a small, carefully selected subset of
allocation sites; we are interested in scalability when the whole

program is analyzed with the precision of deep context.) This is the
shortcoming that we expect to address with type-sensitive analyses.

5.3 Importance of Type Context Choice

In Section 4.2 we argued that, for judicious use of the extra con-
text element, function T has to be defined so that it returns the
enclosing type of an allocation site and not the type that is be-
ing allocated. Experimentally, this is very clearly the case. Fig-
ure 7 demonstrates this for two of our benchmark programs (the
alphabetically first and last, which are representative of the rest).
1obj+H is shown as a baseline, to appreciate the difference. With
the “wrong” type context, a 1type1obj+1H analysis is far more ex-
pensive and barely more precise than 1obj+H, while with the right
type context the analysis is impressively scalable and precise (very
close to 2full+1H, as we show later).

As can be seen, the impact of a good context is highly signif-
icant, both for scalability (in terms of time and internal metrics)
and for precision. In our subsequent discussion we assume that all
type-sensitive analyses use the superior context, as defined above.

5.4 Type-Sensitivity Precision and Performance

We found that type-sensitivity fully meets its stated goal: it yields
analyses that are almost as precise as full-object-sensitive ones,
while being highly scalable. In fact, type-sensitive analyses seem
to clearly supplant other current state-of-the-art analyses—e.g.,
both 2type+1H and 1type1obj+1H seem overwhelmingly better
than 1obj+H in both precision and performance for most of our
benchmarks and metrics.

Our experiment space consists of the four precise analyses
that appear feasible or mostly-feasible with current capabilities:
1obj+H, 2type+1H, 1type1obj+1H, and 2full+1H. Figure 8 shows
the results of our evaluation for 8 of the 10 benchmark programs.
(There is some replication of numbers compared to the previous ta-
bles, but this is limited to columns included as baselines.) We omit
lusearch for layout reasons, since it behaves almost identically to
luindex. We discuss the final benchmark, hsqldb, in text, but do not
list it on the table because 2type+1H is the only of the four analyses
that terminates on it.

Note that the first two analyses (1obj+H, 2type+1H) are seman-
tically incomparable in precision but every other pair has a prov-
ably more precise analysis, so the issue concerns the amount of
extra precision obtained and the running time cost. Specifically,
2full+1H is guaranteed to be more precise than the other three anal-
yses, and 1type1obj+1H is guaranteed to be more precise than ei-
ther 1obj+H or 2type+1H.

The trends from our experiments are quite clear:

• Although there is no guarantee, 2type+1H is almost always more
precise than 1obj+H, hence the 2type+1H precision metrics (re-
ported in the table relative to the preceding column, i.e., 1obj+H)
are overwhelmingly showing negative numbers (i.e., an improve-
ment). Additionally, 2type+1H is almost always (for 9 out of
10 programs) the fastest analysis in our set. In all but one case,
2type+1H is several times faster than 1obj+H—e.g., 5x faster
or more for 4 of the benchmarks. The clear improvement of
2type+1H over 1obj+H is perhaps the most important of our ex-
perimental findings. Recall that 1obj+H is currently considered
the “sweet spot” of precision and scalability in practice: a highly
precise analysis, that is still feasible for large programs without
exploding badly in complexity.

• 2type+1H achieves great scalability for fairly good precision. It
is the only analysis that terminates for all our benchmark pro-
grams. It typically produces quite tight points-to sets, with antlr
being a significant exception that requires more examination. In
terms of client analyses and end-user metrics, the increase in pre-
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insensitive 1obj 1obj+H 2plain+1H 2full+1H

a
n
tl
r time (sec) 86.5 134.0 427.4 236.9 161.1

context-sensitive callgraph edges (thousands) 1,484 966 1,428 2,458
context-sensitive var-points-to (thousands) 13,143 8,147 49,237 24,980 9,279

c
h
a
rt time (sec) 72.2 380.2 1199.2 2496.0 688.2

context-sensitive callgraph edges (thousands) 1,463 1,087 9,564 7,469
context-sensitive var-points-to (thousands) 7,054 19,942 83,354 107,221 22,854

e
c
lip

s
e time (sec) 67.2 228.0 826.0 502.0 480.4

context-sensitive callgraph edges (thousands) 1,921 1,278 2,103 5,341
context-sensitive var-points-to (thousands) 5,754 9,962 64,586 65,435 22,574

lu
in

d
e
x time (sec) 37.9 63.2 179.3 123.9 124.3

context-sensitive callgraph edges (thousands) 384 324 779 1,227
context-sensitive var-points-to (thousands) 2,737 2,781 16,968 9,576 5,072

p
m

d time (sec) 57.7 120.0 293.7 392.6 160.0
context-sensitive callgraph edges (thousands) 553 418 3,610 1,614
context-sensitive var-points-to (thousands) 4,392 5,314 24,902 35,628 6,770

Figure 6. Performance and complexity metrics for object-sensitive analyses. 2full+1H is almost always faster than 2plain+1H (some striking
cases are highlighted). Additionally, 2full+1H makes good use of context and has often substantially lower internal metrics than 2plain+1H,
and typically even than 1obj+H.

1obj+H 1type1obj+1H
bad context good context

a
n
tl
r

call-graph edges 41280 -329 -1124
reachable meths 5692 -3 -78

reachable v-calls 27599 -2 -404
poly v-calls 1266 -51 -27

reach. v-calls in app 16393 0 -9
poly v-calls in app 851 0 0
reachable casts 1009 -1 -38
casts that may fail 614 -4 -157

reach. casts in app 308 0 -1
casts in app may fail 216 0 -61
avg var-points-to 15.14 10.62 8.19

avg app var-points-to 15.25 9.02 8.51
time (sec) 427.4 376.7 114.2

c-s callgraph edge (K) 965 816 960
c-s var-points-to (K) 49237 43030 7459

1obj+H 1type1obj+1H
bad context good context

x
a
la

n

call-graph edges 35908 -408 -1290
reachable meths 7237 -2 -86

reachable v-calls 19828 -2 -389
poly v-calls 1175 -52 -51

reach. v-calls in app 7709 0 0
poly v-calls in app 726 -2 -6
reachable casts 1264 -1 -37
casts that may fail 668 -5 -123

reach. casts in app 501 0 0
casts in app may fail 250 -4 -23
avg var-points-to 14.94 14.03 9.57

avg app var-points-to 15.73 15.14 11.58
time (sec) 979.9 4398.9 831.0

c-s callgraph edge (K) 936 4915 2580
c-s var-points-to (K) 96021 163916 38205

Figure 7. Precision, performance, and internal complexity metrics for a type-object-sensitive analysis with a good and a bad choice of
context. The entries are the same as in Figures 5 and 6, with metric names condensed. As in Figure 5, all but the last two precision metrics
are reported as differences relative to the immediately preceding column (i.e., we are showing how much more precision the good context
yields over the already higher precision of the bad context, not over the baseline).

cision going from 1obj+H to 2type+1H is often greater than that
of going from 2type+1H to 2full+1H. Overall, 2type+1H is an
excellent approximation of 2full+1H given its low cost.

• Although not shown on the table, 2type+1H is not just faster
than the three shown analyses but also faster than 1obj, for 7 out
of 10 benchmark programs. The difference in precision between
the two analyses is enormous, however. A good example is the
hsqldb benchmark, omitted from Figure 8 since 2type+1H is the
only analysis with a context-sensitive heap that terminates for it.
2type+1H processes hsqldb slightly faster than 1obj (404sec in-
stead of 464sec). At the same time, all precision metrics are dras-
tically better. The points-to sets are almost half the size (11.3 to-
tal vs. 22.1, and 13.2 for application vars only vs. 18.2). On other
precision metrics the difference between 2type+1H and 1obj is
much greater than that between 1obj and a context-insensitive
analysis. For “application casts that may fail” alone, 2type+1obj
eliminates 117 instances relative to 1obj.

• 1type1obj+1H is highly precise and its difference from 2full+1H
is rarely significant. (It is illuminating to add the two columns
and compare the cumulative difference of 1type1obj+1H from
1obj+1H, relative to the difference of the former from 2full+1H.)

At the same time, 1type1obj+1H avoids many of the scalability
problems of 2full+1H: it terminates on 8 of 10 benchmarks (in-
stead of 6 out of 10) and is always faster than 2full+1H, occasion-
ally (e.g., chart) by a significant factor.

6. Conclusions

In this paper we strove for a better understanding of the concept
of object-sensitivity in points-to analysis. Our exploration led to
a precise formal modeling, to a complete mapping of past object-
sensitive analyses in the literature, as well as to insights on how
context affects the precision and scalability of an analysis. One con-
crete outcome of our work is to establish full-object-sensitivity (and
especially a 2full+1H analysis) as a superior choice of context com-
pared to others in past literature. Additionally, we have introduced
the concept of type-sensitivity and applied our insights to pick an
appropriate type to use as context of a points-to analysis. The result
is a range of analyses, especially 2type+1H and 1type1obj+1H, that
have very good to excellent scalability, while maintaining most of
the precision of a much more expensive analysis. The new analyses
we introduced are current sweet spots in the design space and rep-
resent a significant advancement of the state-of-the-art in points-to
analysis.
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1obj+H 2type 1type 2full
+1H 1obj+1H +1H

a
n
tl
r

call-graph edges 41280 -1401 -52 -44
reachable meths 5692 -77 -4 -2

reachable v-calls 27599 -405 -1 -5
poly v-calls 1266 -70 -8 -28
reach.v-calls in app 16393 -9 0 0
poly v-calls in app 851 0 0 0
reachable casts 1009 -39 0 0
casts that may fail 614 -104 -57 -47
reach. casts in app 308 -1 0 0
app casts may fail 216 -53 -8 -28
avg var-points-to 15.1 23.0 8.2 8.2
avg app v-points-to 15.3 41.7 8.5 8.5
time (sec) 427.4 78.8 114.2 161.1

c-s callgraph edge (K) 966 512 960 2,458
c-s var-points-to (K) 49,237 4,029 7,459 9,279

b
lo

a
t

call-graph edges 47792 -1797 -489
reachable meths 6945 -85 -12

reachable v-calls 25220 -404 -18
poly v-calls 1406 -82 -85
reach.v-calls in app 13879 -20 0
poly v-calls in app 953 -28 -58
reachable casts 2062 -43 -2
casts that may fail 1546 -45 -120
reach. casts in app 1346 -2 0
casts in app may fail 1134 13 -70
avg var-points-to 32.5 21.8 18.6

avg app var-points-to 42.6 31.9 29.1
time (sec) 2307.2 432.7 2431.0

c-s callgraph edge (K) 1,791 1,036 3,196
c-s var-points-to (K) 73,527 10,375 43,073

c
h
a
rt

call-graph edges 41628 -2776 -191 -85
reachable meths 8339 -133 -27 -8

reachable v-calls 23384 -491 -39 -10
poly v-calls 1104 -155 -20 -27

reach. v-calls in app 3641 -30 -29 0
poly v-calls in app 93 -8 -6 0
reachable casts 1668 -55 -10 0
casts that may fail 1023 -39 -199 -46
reach. casts in app 228 -15 -7 0
casts in app may fail 115 3 -66 -7
avg var-points-to 20.1 8.5 6.8 6.7

avg app var-points-to 14.4 4.0 2.8 2.8
time (sec) 1199.2 143.2 199.0 688.2

c-s callgraph edge (K) 1,087 974 1,252 7,469
c-s var-points-to (K) 83,354 6,572 9,093 22,854

e
c
lip

s
e

call-graph edges 32216 -2575 -86 -42
reachable meths 6321 -127 -4 -1
reachable v-calls 17841 -577 -1 -4
poly v-calls 752 -77 -24 -26

reach. v-calls in app 5805 -74 -1 0
poly v-calls in app 243 3 -7 -2
reachable casts 1228 -51 0 0
casts that may fail 685 -58 -98 -28

reach. casts in app 471 -8 0 0
casts in app may fail 246 -5 -44 -8
avg var-points-to 16.1 11.8 9.1 9.1

avg app var-points-to 15.8 13.0 9.5 9.4
time (sec) 826.0 178.0 301.1 480.4

c-s callgraph edge (K) 1,278 1,314 2,241 5,341
c-s var-points-to (K) 64,586 9,232 17,154 22,574

1obj+H 2type 1type 2full
+1H 1obj+1H +1H

jy
th

o
n

call-graph edges 30370 -2091
reachable meths 5754 -118

reachable v-calls 16057 -830
poly v-calls 768 -71
reach. v-calls in app 7146 -492
poly v-calls in app 422 0
reachable casts 1272 -18
casts that may fail 741 -11
reach. casts in app 677 0
casts in app may fail 445 17
avg var-points-to 21.2 19.1
avg app var-points-to 30.7 31.4
time (sec) 1215.7 2107.6

c-s callgraph edge (K) 923 4,399
c-s var-points-to (K) 110,113 53,552

lu
in

d
e
x

call-graph edges 22251 -1368 -63 -42
reachable meths 4677 -78 -4 -2

reachable v-calls 12365 -400 -1 -5
poly v-calls 435 -66 -12 -26
reach. v-calls in app 1173 -4 0 0
poly v-calls in app 29 4 -4 0
reachable casts 761 -38 0 0
casts that may fail 429 -54 -66 -19
reach. casts in app 62 0 0 0
casts in app may fail 25 3 -18 0
avg var-points-to 10.8 7.8 6.4 6.3

avg app var-points-to 5.9 4.2 2.9 2.9
time (sec) 179.3 67.7 80.8 124.3

c-s callgraph edge (K) 324 473 656 1,227
c-s var-points-to (K) 16,968 2,848 3,892 5,072

p
m

d

call-graph edges 29134 -1720 -52 -80
reachable meths 6080 -86 -5 -8

reachable v-calls 15722 -475 -1 -12
poly v-calls 508 -83 -8 -37

reach. v-calls in app 4436 -84 0 -4
poly v-calls in app 81 -17 0 -11
reachable casts 1230 -40 0 0
casts that may fail 832 -63 -75 -34
reach. casts in app 527 -2 0 0
casts in app may fail 431 -12 -26 -15
avg var-points-to 15.8 8.8 7.3 7.3

avg app var-points-to 26.1 8.9 8.0 8.0
time (sec) 293.7 78.2 128.1 160.0

c-s callgraph edge (K) 418 527 1,043 1,614
c-s var-points-to (K) 24,902 3,370 5,901 6,770

x
a
la

n

call-graph edges 35908 -1553 -145
reachable meths 7237 -65 -23
reachable v-calls 19828 -355 -36
poly v-calls 1175 -88 -15

reach. v-calls in app 7709 35 -35
poly v-calls in app 726 -1 -7
reachable casts 1264 -34 -4
casts that may fail 668 21 -149

reach. casts in app 501 4 -4
casts in app may fail 250 52 -79
avg var-points-to 14.9 12.1 9.6

avg app var-points-to 15.7 14.4 11.6
time (sec) 979.9 435.8 831.0

c-s callgraph edge (K) 936 2,871 2,580
c-s var-points-to (K) 96,021 21,717 38,205

Figure 8. Precision, performance, and internal complexity metrics for precise analyses. The entries are the same as in Figures 5 and 6, with
metric names condensed. As in Figure 5, all but the last two precision metrics are reported as differences relative to the immediately preceding
column. Empty entries are due to non-termination after 2 hours of running time. Some of the most interesting metrics are highlighted.
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